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Abstract—DuckDB is a high-performance, open-source, free
analytical database system designed for efficient in-process data
analytics. Its architecture emphasizes speed, reliability, and ease
of integration. GroupJoin is a new database operator that fuses
two operators into one to improve performance.

First, we performed a simple experiment to demonstrate the
baseline comparison of GroupJoin against the currently used
HashJoin-Aggregate logic, to analyze the conceptual efficacy of
GroupJoin.

Next, we implemented and evaluated a new physical database
operator, GroupJoin, aimed at optimizing query execution patterns
where a JOIN operation is immediately followed by a GROUP BY.
Instead of executing the join and aggregation as separate steps,
the GroupJoin operator combines both phases into a single, tightly
coupled operator. This optimization can reduce intermediate data
materialization and improve cache locality, leading to potential
performance gains. We integrated the GroupJoin operator into
the DuckDB query execution engine, modified the planner to
identify candidate patterns, and evaluated its impact. GroupJoin
offers both conceptual simplicity and performance benefits in
scenarios common to analytical query processing. Our initial
implementation, although inefficient compared to DuckDB’s native
operators, demonstrates the potential for performance benefits.

Index Terms—DuckDB, Query Optimizer, Logical Plan, Physical
Plan, Physical Operator, GroupJoin, Baseline Comparison, TPC-
H, Restricted Implementation

I. INTRODUCTION

Modern analytical query engines are increasingly optimized
to exploit common query patterns and to reduce unnecessary
computation and data movement. One such ubiquitous pattern in
analytical workloads is a JOIN operation followed immediately
by a GROUP BY clause. This combination often appears
in star-schema queries and reporting-style queries, where
data from multiple tables is joined and then aggregated
(e.g., summarizing sales per region, per product, etc.). The
traditional query execution engines handle these as two separate
operators — a JOIN followed by a GROUP BY — which may
involve materializing large intermediate results and performing
redundant computations.

To address this inefficiency, we explored the design and
implementation of a new physical operator, GroupJoin [6], in
DuckDB [1] — a lightweight, high-performance, in-process
analytical database system. The GroupJoin operator fuses the
join and aggregation phases into a single, unified operator.
This integration allows the system to bypass the creation of
full intermediate join results and directly aggregate on-the-
fly during the join process, reducing memory overhead and
improving performance.

A. Formal Definition of GroupJoin

Although GroupJoin is defined in [6] (Sec. 2.5), we redefine
it here for convenience:
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This definition describes an operator that joins two relations, e;
and eq, by grouping the matching rows from es and applying
an aggregation function to them. The result contains all tuples
from e; extended with a new attribute g holding the aggregated
result.

TABLE I
COMPONENT BREAKDOWN OF THE GROUPJOIN OPERATOR

Symbol Description

ey, e The two input relations (tables).

... The groupjoin operator symbol.

A10As The join predicate, where A1, Ao are attributes and 6
is a comparison operator (=, | =, etc.).

g, f Defines the aggregation step, where f is an aggregation
function (e.g., COUNT) and g is the new attribute name.

Yy Eer Iterates through each tuple y in the left relation e;.

{z]...} The core grouping mechanism; collects all matching
tuples x from e2 into a bag (multiset).

G = f(...)» Applies the aggregation function f to the entire bag,
yielding a single value G.

yog:G The output tuple, formed by extending tuple y with the

new attribute g holding the value G.

II. RELATED WORK

The concept of pushing aggregation through joins has
been explored in prior literature, notably in works such
as the DBToaster project [2], which uses incremental view
maintenance to optimize such patterns, and in fused operators
proposed for query compilation engines like HyPer [3], where
join-aggregate fusion improves cache locality and reduces
CPU cycles. Similarly, techniques like late materialization
and operator fusion in systems such as MonetDB [4] and
Vectorwise [5] have shown that tightly integrated operator
pipelines are effective for analytical performance.

GroupJoin as a concept has been studied more directly
by Moerkotte and Neumann [6], who formalized the idea



of combining joins and group-by aggregations into a single
algebraic operator. They showed that such a transformation can
reduce the complexity of query plans and lead to substantial
performance benefits in analytical settings. Extending this work,
Fent and Neumann [7] presented a practical implementation
of GroupJoin and nested aggregates within a compiled query
engine, demonstrating its viability and benefits in real-world
workloads.

Building upon these ideas, our work implements a specialized
GroupJoin operator directly within DuckDB’s vectorized
execution engine. We aim to evaluate the correctness and
performance implications of this transformation on represen-
tative analytical queries. We begin by performing a baseline
comparison to support the conceptual and theoretical efficacy
of GroupJoin.

III. BASELINE COMPARISON

This section details an empirical study comparing the
performance of two fundamental database query processing
strategies: a traditional post-aggregation hash join (Hash-Join
then Aggregate) and a more optimized pre-aggregation strategy
(Group-Join) outside of DuckDB. The next section emphasizes
the GroupJoin implementation in DuckDB.

A controlled simulation environment was developed using
C++ to implement and time these algorithms. Synthetic datasets
of varying sizes and key uniqueness were generated using
Python scripts to facilitate a comprehensive benchmark. The
results, visualized using matplotlib and seaborn libraries,
conclusively demonstrate that the pre-aggregation approach
offers a considerable performance and scalability advantage.
The code repository is at this GitHub link.

A. Tools and Technologies

The following system, tools and technologies were used
for the baseline comparison and implementing GroupJoin in
DuckDB:

System Specifications:

o OS: Ubuntu Linux 25.04 (Linux 6.14.0-15-generic)
o CPU: AMD Ryzen 7 5800H (8 cores, 16 threads)
« RAM: 24 GB DDR4

Tools and Build Setup:

¢ Visual Studio Code (VSCode): Used as the primary
code editor, offering features like IntelliSense, debugging
support, and Git integration.

o CMake: Used for configuring the DuckDB build system.
It simplifies the compilation and linking of large C++
projects with modular components.

¢ GCC (GNU Compiler Collection): Used as the C++
compiler for building the DuckDB source code.

o« Make: Used to orchestrate the compilation process
through CMake-generated Makefiles.

« GDB and LLDB: Used for debugging and step-wise
inspection of the DuckDB execution engine during devel-
opment and testing.

In this section, we compare simulations of a simple query
with the following form:

SELECT A.k, SUM(A.v)
FROM A JOIN B
ON A.k = B.k
GROUP BY A.k;

AS summ

Listing 1. Query for Baseline Benchmarking

B. Data Generation

A Python script (‘data_gen.py‘) was developed to generate
synthetic data for two tables, A and B as A.txt and B.txt.

« Table A: Contains two integer columns, ‘(k, v)*.
o Table B: Contains a single integer column, ‘(k)‘.

The script accepts command-line arguments to control the
number of rows in each table and the degree of key(k) unique-
ness across both tables. Our key k is both the join key and
group-by key. This key-uniqueness allows for benchmarking
performance under various data distributions, from scenarios
with many duplicate keys (low uniqueness) to those where
most keys are unique.

C. Benchmark Implementation

A C++ program (‘combined_compare.cpp‘) was imple-
mented to simulate the database operations. It reads the two
tables from CSV files (‘A.txt’, ‘B.txt‘) into memory and
executes the target query using two distinct algorithms.

1) Algorithm 1: Hash-Join then Aggregate (Post-
Aggregation): This method follows the traditional simple
Hash-Join algorithm [8] followed by aggregation:

1) Join Phase (Build + Probe): A hash table is built in
memory on the key ‘k‘ from Table A. Table B is then
streamed, and for each row, the hash table is probed. For
every match found, a new row is materialized in a large
intermediate ‘JoinedRow* vector.

2) Aggregation Phase: The program iterates through the
entire intermediate ‘JoinedRow* vectors, computing the
final ‘SUM(v)‘ for each key ‘k‘ using a second hash map.

2) Algorithm 2: Group-Join (Pre-Aggregation): This method
avoids the creation of the large intermediate table by summa-
rizing data first:

1) Pass 1: The program scans Table A and computes a partial
aggregate, storing the sum of ‘v for each distinct key ‘k*
in a hash map: Mapa(k — > v).

2) Pass 2: The program scans Table B and computes the
count for each distinct key ‘k‘ in a second hash map:
Mapp(k — count(x)).

3) Final Join Phase: The program iterates through one of the
small summary maps (e.g., Mapp) and probes the other.
For each matching key, the final aggregate is calculated
by multiplying the pre-calculated sum from Mapa with
the count from Mapp.



https://github.com/akashmaji946/Baseline-Comparision-For-GroupJoin

D. Results and Analysis

The following two tables provide a granular view of the raw
performance data collected from the C++ benchmark program
for two tables (e.g., 1M rows, 200M rows). The keys (k) were
generated randomly for both tables with uniqueness percentages
ranging from 10 to 100 in steps of 10. We measured the times
and relative speedups.

TABLE I1
PERFORMANCE RESULTS FOR TABLE SIZE: 1M
Uniqueness | Hash-Join (s) | Group-Join (s) | Speedup
10% 0.1899 0.0472 4.02x
20% 0.3488 0.0932 3.74x
30% 0.4403 0.1552 2.84x
40% 0.5545 0.3069 1.81x
50% 0.5611 0.3287 1.71x
60% 0.6465 0.4251 1.52x
70% 0.6250 0.4624 1.35x
80% 0.7234 0.6471 1.12x
90% 0.7689 0.6794 1.13x
100% 0.7576 0.6959 1.09x
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Fig. 1. Execution Time v/s Key Uniqueness

TABLE III
PERFORMANCE RESULTS FOR TABLE SIZE: 200M

Uniqueness | Hash-Join (s) | Group-Join (s) | Speedup
10% 86.38 45.47 1.90x
20% 130.09 66.52 1.96x
30% 168.98 93.65 1.80x
40% 184.21 112.37 1.64x
50% 201.80 135.32 1.49x
60% 224.79 183.21 1.23x
70% 236.50 201.35 1.17x
80% 244.85 223.87 1.09x
90% 256.34 244.13 1.05x
100% 259.19 254.11 1.02x
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Fig. 2. Execution Time v/s Key Uniqueness

We now generate visualization plots for comparing the
runtimes and speedups of varying configurations.
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Fig. 3. Speed Up v/s Key Uniqueness

The generated plots consistently show that the GroupJoin
(Pre-Aggregation) algorithm outperforms the Hash-Join-then-
Aggregate approach across all tested data sizes and uniqueness
levels. This is for the simplest query type (Listing-1).

The key observation is that the performance gap widens
dramatically as key uniqueness decreases (i.e., as the number
of duplicate keys increases). This is because low uniqueness
causes the size of the intermediate table in the post-aggregation
method to explode, leading to high memory pressure and
processing overhead. In contrast, the pre-aggregation method’s
memory footprint is dependent only on the number of distinct
keys, making it far more scalable. The speedup factor, which
quantifies this difference, is highest at low uniqueness values
and gradually decreases as uniqueness approaches 1.0, though
the Group-Join method remains faster in almost all scenarios.

E. Conclusion of Baseline Comparison

The results of this study provide strong quantitative evi-
dence supporting the initial hypothesis that GroupJoin would
perform better. The pre-aggregation (Group-Join) strategy is
demonstrably superior in performance and scalability to the
naive post-aggregation (Hash-Join then Aggregate) strategy for
queries involving joins and group-by aggregations even for



the simple query where materialization cost for each matched
row is very little. The findings underscore the importance
of query optimization techniques that minimize the size of
intermediate data structures, a core principle in the design of
efficient database systems. We believe that for more complex
scenarios, the execution time for the traditional approach would
be higher due to increased materialization costs, while the
GroupJoin operator’s time would be comparatively less.

IV. METHODOLOGY

This section focuses on the GroupJoin implementation in
DuckDB and the methodology used.

A. Development Setup and Tools

The implementation of the GroupJoin operator was carried
out using the open-source DuckDB codebase, version 1.1.0,
available at https://github.com/duckdb/duckdb/tree/v1.1.0. All
development was performed on a Linux machine which provides
a stable environment for systems programming and database
development. The code repository is at this GitHub link.

DuckDB was compiled from source with development flags
enabled to facilitate debugging and instrumentation. We worked
with three build modes, such as: release, debug, and release
with debug. Custom logging and profiling utilities were added
to trace query plan construction, physical operator selection,
and execution flow for queries matching the join-group-by
pattern. The performance comparison in section VIII was done
with release mode.

B. Experimental Datasets

We use the following datasets for evaluation:

« TPC-H Benchmark: Datasets generated at scale factors
1, 5, 10, 30, 50 using DuckDB’s built-in extensions
(e.g., tpch-sf10.db, tpch-s£30.db, etc.). These
datasets simulate real-world analytical workloads with
complex join and aggregation queries, commonly used for
benchmarking database systems. We use these datasets
for performance comparison.

« Synthetic Uniform Datasets: Custom-generated datasets
with two tables (A and B) at increasing scales — 1K, 1M,
and 10M rows — saved as small.db, medium.db,
and big.db respectively. These were used to validate
the correctness and scalability of the GroupJoin operator
during development phase in controlled settings.

C. Evaluation Metrics

To judge our implementation, we focused on these metrics
with primary focus on first:

o Accuracy: Does the query produce the correct number
of rows and the correct values on specified dataset as
compared to the expected results.

« Latency: How long does it take, on average over few runs,
to process one query on a given dataset by our GroupJoin
implementation and their default execution.

D. Evaluation Queries

We use the following custom TPC-H style queries on our
TPC-H datasets, call them Q1, Q2 and Q3 respectively.

SELECT 1_orderkey,
FROM lineitem
JOIN orders

ON 1_orderkey = o_orderkey
GROUP BY 1_orderkey;

SUM(1_extendedprice)

Listing 2. Lineitem-Orders GroupJoin Query

SELECT c_custkey,
total_balance
FROM customer
JOIN orders
ON customer.c_custkey =
GROUP BY c_custkey;

SUM (c_acctbal) AS

orders.o_custkey

Listing 3. Customer-Orders GroupJoin Query

SELECT ps_partkey,
FROM partsupp
JOIN part

ON ps_partkey = p_partkey
GROUP BY ps_partkey;

SUM (ps_supplycost)

Listing 4. Partsupp-Part GroupJoin Query

V. IMPLEMENTATION OVERVIEW

Our initial implementation focuses on having a working
GroupJoin operator in DuckDB that works with existing
operators and interface in the codebase, and working with
suitable queries targetted by the operator. For now, our
operator works with simpler types like INTEGER/BIGINT and
FLOAT/DECIMAL for the join columns and group by keys. It
can be extended to generic cases with not much effort. Also, for
now we explore only the cases where the join column matches
the group by key of one relation among the participating two
relations. We check the working for these three aggregate
variants: SUM(), COUNT(), and AVG() only.

VI. KEY TERMS AND CONCEPTS
A. Architecture

DuckDB is a columnar database, using its custom DuckDB
Storage Format, which is a compressed, columnar, block-based
format designed for efficient storage and query execution. The
entire database, including data, metadata, and indexes, is stored
in a single, self-contained file for ease of use and portability.
The database can sit in a file with a .db extension.

B. Query Planning

When a query is submitted to the engine, it obtains a
logical plan tree. This tree contains logical operators as nodes.
For example, a LOGICAL_COMPARISON_JOIN is a logical
operator that can be replaced by an appropriate physical
operator like PHYSICAL_HASH_JOIN, PHYSICAL_NL_JOIN
etc. The choice of actual algorithm is left to the optimizer
based on estimated cardinality in DuckDB.
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C. Internal Structures

A Value is a unit that holds a single value of arbitrary type.
A Vector is the smallest unit of data handling holding values
in a column. A DataChunk is a set of Vectors serving as the
unit of data processing in the pipeline through operators. A
Vector can hold up to a fixed number of values, defined by
STANDARD_VECTOR_SIZE. This parameter is configurable,
and we keep it at 2048 as it is standard in DuckDB.

D. Query Execution

The execution model used in DuckDB is currently push-
based, which is a revamp from the earlier pull-based model.
This means, the operators in DuckDB process the data (e.g.
Join) and push the data to the next operator (e.g. filter) in the
pipeline. This allows for massive parallelism, reduced latency,
and simplified dataflow. The execution happens in a pipelined
mode, meaning a long execution sequence is broken down into
multiple pipeline events, and executed possibly in parallel. Each
pipeline event has one or more operators in their dependency
order, and the operations in the pipeline are done in that order.
Each pipeline has three interfaces: Source, Operator and Sink.
Source produces data for the Operator, which processes the
data, and Sink stores the processed results for the next pipeline.

VII. IMPLEMENTATION DETAILS

The Grouploin operator is introduced in the physical query
plan when we find a ‘Join’ operator as a child under the ‘Group
By’ node in the logical plan tree of the query. The *Join’ opera-
tor can be any logical operator or physical operator. The logical
plan generated is based on the logical operators, which is to be
replaced with physical operators. To implement this, whenever
we see a LOGICAL_AGGREGATE_AND_GROUP_BY operator,
we check to see if there is a LOGICAL_COMPARISON_JOIN
operator somewhere in the child nodes. If such a child node
exists, we replace the parent with our GROUPJOIN physical
operator and return the generated plan. The query planner is
extended to detect join-group-by patterns and replace them
with the GroupJoin operator whenever applicable.

For example, when we run the following query in Listing-4
to see the physical plan, we get the modified physical plan as
shown in Fig-5 from original plan in Fig-4.

explain

select 1_orderkey, sum(l_extendedprice)
from lineitem JOIN orders
on 1_orderkey = o_orderkey
group by 1_orderkey;

Listing 5. Chcking Physical Plan using Explain

Algorithm 1 CANREPLACEBYGROUPJOIN 1(LogicalOperator
&op)

1: if op.type # LOGICAL_AGGREGATE_AND_GROUP_BY

then

2 return false

3: end if
4: groupby < op.Cast<LogicalAggregate>()
5: if groupby.groups.size() > 0 then
6:
7

if groupby.children[0] # null then
: if groupby.children[0].type =
LOGICAL_COMPARISON_JOIN then
return true
: end if
10: else if groupby.children|0].children[0] # null then
11: if  groupby.children|0].children[0].type =
LOGICAL_COMPARISON_JOIN then
12: return true
13: end if
14: end if
15: end if
16: return false

o x

PROJECTION

HASH_GROUP_BY
(I_orderkey)

PROJECTION
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Fig. 4. Physical Plan Before replacing with GroupJoin

PROJECTION

I
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(I_orderkey = o_orderkey)
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SEQ SCAN
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SEQ SCAN
(orders)

Fig. 5. Physical Plan After replacing with GroupJoin



To support GroupJoin as a physical operator in DuckDB,
we implemented a new class PhysicalGroupdJoin derived
from the base PhysicalJoin operator. This operator is
designed to hold two children, namely left and right table,
from where data will be scanned. PhysicalJoin inherits
from PhysicalOperator operator representing the base of
all operators in the database.

A. Class Structure

The PhysicalGroupJoin class overrides key interfaces from
the base physical operator hierarchy (PhysicalJoin and Phys-
icalOperator) to support the three core phases of DuckDB’s
execution engine: sink, operator, and source.

The following metadata are stored in the operator’s state:

e condition — stores the join condition (= or !=, etc.)

e groups, aggregates — expressions representing the
group-by keys and aggregate functions.

e aggregation_map, final_results — hash maps
used to accumulate intermediate and final group-
aggregated values.

B. Sink Phase

In our implementation, the Sink () method is responsible
for buffering the input data rather than performing aggregation
immediately. During this phase, incoming DataChunks from
the left and right children are copied and stored into the custom
global sink state.

No aggregation or join logic is performed at this stage. This
design choice simplifies parallelism and decouples compute-
heavy logic from the ingestion phase. Remember that Sink() can
be called in parallel for the two datasources(two tables) are they
are independent pipelines having same operator(GroupJoin)
where they sink their data.

This method is called by the pipeline executor multiple times
for each operator, until all datachunks have been sunk.

C. Finalize Phase

The core logic of join and aggregation is executed during
the Finalize () method. Once all input data has been
collected, we iterate over the stored chunks to perform on-
the-fly aggregation. This is known as early-aggregation as we
know that we are into this Physical Plan seeing the query and
having decided GroupJoin is possible.

Depending on the join condition, one of the following
routines is called:

e PerformEqualityAggregation () for equality
joins (=)

e PerformInEqualityAggregation () for inequal-

ity joins (!=, etc.)

These routines traverse the buffered left and right chunks,
compare tuples according to the join condition, and update
the aggregation hash maps (such as final_results) in-
place. This two-phase approach makes the operator modular

and easier to debug.

This method is called by the pipeline executor only once
for each pipeline(table scan), so we must prevent double
aggregation.

D. Source Phase

The GetData () method emits the final aggregated results,
packaged as DataChunks to the consumer of the pipeline,
which is the Projection operator at the top of the query plan.
This allows GrouplJoin to act as a full producer of data, similar
to an aggregation operator.

This method is called by the pipeline executor multiple times
for each consumer, till all datachunks have been sourced.

E. Planner Integration

To integrate GroupJoin into the query planner, we detect
patterns of the form:

SELECT k, SUM(v)
FROM A JOIN B ON A.k = B.w
GROUP BY k;

Listing 6. Supported Query Template

Such patterns are identified in the logical plan, and replaced
with a custom logical operator node that is later transformed
into a PhysicalGroupJoin during physical plan genera-
tion.

F. Operator Characteristics

Our PhysicalGroupJoin operator has the following charac-
teristics:

« Pipeline aware: Implements both sink and source inter-
faces, making it usable as a standalone pipeline.

o Non-parallel: The current implementation is
single-threaded, with ParallelSink () and
ParallelSource () both returning false.

o Order sensitive: Preserves output ordering, indicated via
SourceOrder () and OperatorOrder () returning
FIXED_ORDER.

o Custom State: We also define custom sink and source
states to hold per-thread and global accumulation data.
These are derived from DuckDB’s GlobalSinkState
and GlobalSourceState interfaces.

G. Pipeline Construction

In DuckDB, each physical operator can contribute one
or more execution pipelines depending on whether it acts
as a source, sink, or intermediate operator. In the case of
PhysicalGroupdJoin, the operator acts as a sink and
source, so it creates a pipeline that performs the final ag-
gregation in the Finalize () phase.

The BuildPipelines () method is responsible for defin-
ing the dependencies between the GroupJoin pipeline and its
child pipelines. DuckDB builds and schedules these pipelines
based on such dependencies.




The pipeline building process proceeds as follows:

o The current pipeline is marked as the finalization pipeline
for the join, by calling SetPipelineSource ().

e Two child meta-pipelines are created — one for
the left child and one for the right child — using
CreateChildMetaPipeline ().

o These meta-pipelines recursively build their own pipelines
to scan the input tables.

« Finally, the current (GroupJoin) pipeline is marked as
dependent on the left and right base pipelines. This ensures
that the data is fully scanned and buffered before the
GrouplJoin’s finalization runs.

The following code snippet shows the C++ implementation:

i ~a ]

void Phy ':BulldPlpellnes(

current, Meta >line &meta plpellne) {
D_ASSERT (children.size () == 2); 4 join

auto &left_child =
auto &right_child =

children[0];
children[1];

as the sin

ze (), so

meta_pipeline.GetState();
state.SetPipelineSource (current, =this);

MetaPipeline &left _meta = meta plpellne
CreateChildMetaPipeline (current, =this);
left_meta.Build(xleft_child);

MetaPipeline &right_meta = meta_pipeline.
CreateChildMetaPipeline (current, =this);
right_meta.Build(*xright_child);

shared;ptr<P1 ellne> current ptr = current

shared_from_this();
shared ptr<Pipeline> &left_ptr = left_meta.

GetBasePipeline () ;
shared ptr<Pipeline> &right_ptr =
GetBasePipeline () ;

right_meta.

//

Add &/'—“

/ 1 bot chi /
current_ptr >AddDependency(left_ptr),
current_ptr->AddDependency (right_ptr);

Listing 7. Pipeline construction in PhysicalGroupJoin

H. Aggregation Logic
We primarily focus on equality aggregation as it is
amenable to the Hash-Join-Aggregate algorithm. The
PerformEqualityAggregation () method in the
PhysicalGroupJoin class implements a hash-based
aggregation strategy for queries with equality join conditions
followed by a GROUP BY. This implementation avoids the
overhead of materializing the full join result and instead
performs aggregation using independent scans of two tables.
o Step 1: Pre-Aggregate Left Table (A)
The left input table (referred to as left_data) is
scanned once. For each row, the grouping key and value
column are extracted, and the partial sum is computed
and stored in a hash map: left_sums. This map has
the structure: Key — SUM (value).

o Step 2: Count Matching Keys in Right Table (B)
The right input table (right_data) is scanned, and the
grouping key is extracted from each row. A second hash
map right_counts is maintained to count the number
of occurrences of each key: Key — COUNT (x).

o Step 3: Final Aggregation
For every key in 1left_sums, the corresponding count
from right_counts is retrieved (if it exists), and the
final result is computed as:

final_results[key] = left_sum X right_count

This result is stored in the global final_results
map. If a key from the left table is not present in the right
table, it is ignored. Refer Listing-8 for details.

The following code snippet shows the C++ implementation for
the equality-based aggregation:

void
duckdb: :PhysicalGroupJoin::
PerformEqualityAggregation(
duckdb: :GroupJoinGlobalSinkState &global_state,

std::unordered_map<int, double>& final results)
const {
std::cout << "Inside PerformEqualityAggregation()"
<< std::endl;
std::unordered_map<int, double> left_sums;

std::unordered_map<int, long long int>

right_counts;

duckdb:
duckdb: :DataChu

:DataChunk lscan_chunk;
nk rscan_chunk;

global state. left _data. InltlallzeScan()

while (global_state.left_data.Scan (lscan_chunk)) {
for (size_t i = 0; i < lscan_chunk.size(); ++1i){
int key;
double value;
try {
key = lscan_chunk.data[0].GetValue (i) .

GetValue<int> () ;
value = lscan_chunk.datal[l]
GetValue<double> () ;
} catch(const std::exception& e) {
std::cout << e.what () << std::endl;
continue;

.GetValue (i) .

}
left_sums[key]

+= value;

global state.right_data. InltlallzeScan()

while (global_state.right_data.Scan (rscan_chunk)) {
for (size_t i = 0; i < rscan_chunk.size(); ++1i){
int key;
try {
key = rscan_chunk.data[0].GetValue (i) .
GetValue<int> () ;
} catch(const std::exception& e) {

continue;

}
right_counts[key]++



* count

left_sums) {

inal agc

(const”auté &left_entry :
int key = left_entry.first;
double sum = left_entry.second;

for

long long int matching_rows =
right_counts.count (key)? right_countslkey]l: 0;
if (matching_rows > 0) {

final_results([key] = sum * matching_rows;

}

Listing 8. Equality Aggreagtion Logic in PhysicalGroupJoin

The PerformInEqualityAggregation () method in
the PhysicalGroupJdoin class implements similar hash-
based aggregation strategy for queries with inequality join
conditions followed by a GROUP BY. The core logic is similar;
we use non-matching rows to compute the final_results map.

VIII. RESULTS AND ANALYSIS

We generated the TPC-H datasets for various scaling factors
using the in-built DuckDB extensions as follows:

A. Initial Results

The performance results, given in tables VI through X,
consistently show that our proof-of-concept GroupJoin im-
plementation is significantly slower than DuckDB’s native
hash-join-aggregate pipeline across all tested scale factors. The
performance ratio, calculated as DuckDB’s execution time
divided by our operator’s time from start to end of query
execution, ranges from approximately 0.08x to 0.27x. It is to
be noted that DuckDB uses cache-conscious radix-partitioned
hash-join [8](multiple hash tables instead of one) followed by
aggregate as the two operators, while we use a single hash-table
inside the GroupJoin operator. We used the clean DuckDB
release (v/.1.0) to compare against our implementation of
GroupJoin on DuckDB (v/.1.0) for the tables VI through X.

INSTALL tpch;
LOAD tpch;

Listing 9. Dataset generation

TPC-H datasets were generated for scale factors of 1, 5, 10,
30, and 50, as shown in table IV.

TABLE IV
TPCH DATABASE FILE SIZES AND GENERATION COMMANDS
Command Scale Factor | Size on Disk
CALL dbgen(sf = 1); SF=1 0.27 GB
CALL dbgen(sf = 5); SF=5 1.3 GB
CALL dbgen (sf = 10); SF=10 2.7 GB
CALL dbgen (sf = 30); SF=30 8.2 GB
CALL dbgen (sf = 50); SF=50 13.7 GB

The following relations are involved in the three queries Q1,
Q2 and Q3 which are given in section IV.

TABLE V
CARDINALITY OF TPC-H TABLES ACROSS DIFFERENT SCALE FACTORS

Table Name | SF=1 | SF=5 | SF=10 | SF=30 | SF =50
customer 150K 750K 1.50M 4.50M 7.50M

lineitem 6.00M | 30.00M | 59.99M | 180.01M | 300.01M
orders 1.50M 7.50M 15.00M 45.00M 75.00M
partsupp 800K 4.00M 8.00M 24.00M 40.00M
part 200K 1.00M 2.00M 6.00M 10.00M

TABLE VI
QUERY PERFORMANCE COMPARISON (SF=1)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 0.596 4211 1.50M 0.14x
Q2 0.040 0.517 200K 0.08x
Q3 0.064 0.248 100K 0.26x
TABLE VII
QUERY PERFORMANCE COMPARISON (SF=5)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 2.857 15.775 7.50M 0.18x
Q2 0.212 2.552 1.00M 0.08x
Q3 0.441 1.964 500K 0.22x
TABLE VIII
QUERY PERFORMANCE COMPARISON (SF=10)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 5.965 41.459 15.00M 0.14x
Q2 0.525 5.339 2.00M 0.10x
Q3 1.317 4.928 1.00M 0.27x
TABLE IX
QUERY PERFORMANCE COMPARISON (SF=30)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 17.443 90.710 45.00M 0.19x
Q2 1.970 15.428 6.00M 0.13x
Q3 5.073 25.207 3.00M 0.20x
TABLE X
QUERY PERFORMANCE COMPARISON (SF=50)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 33.756 204.800 75.00M 0.16x
Q2 3.885 21.990 10.00M 0.18x
Q3 7.224 30.466 5.00M 0.24x



https://github.com/duckdb/duckdb/tree/v1.1.0
https://github.com/duckdb/duckdb/tree/v1.1.0

B. Analysis

The primary architectural difference and a major contributor
to the performance gap is our operator’s blocking nature
versus DuckDB’s fully streaming execution model. Our naive
implementation first consumes and buffers the entire relations
into an in-memory state. Only after this is complete does it
begin probing and computing the final results. But DuckDB
streams the datachunks without buffering them all.

The second fundamental reason for the performance disparity
is parallelism. Our naive GroupJoin operator is implemented
as a single-threaded algorithm and uses a single hash-table,
resulting in costly lookups and inserts. DuckDB, on the other
hand, has its hash-join and aggregation operators heavily
parallelized, capable of partitioning the workload across all
available CPU cores. It uses cache-conscious radix-partitioned
hash-join, making it faster. This intra-operator parallelism
dramatically accelerates both the construction of the hash table
and the subsequent probing and aggregation steps, leading to
the orders-of-magnitude performance advantage observed in
our results.

C. Performance under restrictions

To establish a fair basis for comparison, we evaluate our
GroupJoin operator against a restricted version of the native
DuckDB (v1.1.0) implementation. We will call this restricted
native implementation. By restricted, we mean limiting the
number of threads to one, removing the parallelism of the
Source, Sink and Operator interfaces of all operators (namely
HashJoin and Aggregate). We will schedule the pipeline events
one after another like table scans. Also, we will restrict the
algorithm to use only one hash-table (by setting partitions
to 1). These modifications are intended to align the execution
model of the native engine with our proof-of-concept GroupJoin
implementation, which does not leverage parallelism, thus
enabling a more direct comparison. We limit the number of
threads to one for fair comparison as:

We measure the query running times (in seconds) using the
following inbuilt DuckDB extension:

.timer ON

PRAGMA threads=1;

Listing 10. Limiting threads

he opnerator non-narallel
the operator non-pa

bool ParallelSink ()
return false;

const override {

}
bool SinkOrderDependent ()
return true;

const override ({

),

/ set one scheduler task (serial execution)

duckdb: :TaskScheduler: :SetSchedulerThreads (1) ;

= rtiti

rece 1

idx_t RadixHTConfig::InitialSinkRadixBits () const {
return O;

},,

Sroe no part it ning
rorce no partlitl1oning

idx_t RadixHTConfig::MaéimumSinkRadixBits() const {
return 0;

}

Listing 11. Changes made in restricted native implemenation

Listing 12. Time measurement

TABLE XI
QUERY PERFORMANCE COMPARISON (SF=1)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 11.145 4211 1.50M 2.65x
Q2 0.630 0.517 200K 1.22x
Q3 1.129 0.248 100K 4.55x
TABLE XII
QUERY PERFORMANCE COMPARISON (SF=5)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Ql 55.758 15.775 7.50M 3.53x
Q2 3.484 2.552 1.00M 1.37x
Q3 7.330 1.964 500K 3.73x
TABLE XIII
QUERY PERFORMANCE COMPARISON (SF=10)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Q1 113.950 41.459 15.00M 2.75x
Q2 15.627 5.339 2.00M 2.93x
Q3 12.584 4.928 1.00M 2.55x
TABLE XIV
QUERY PERFORMANCE COMPARISON (SF=30)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Ql 371.444 90.710 45.00M 4.09x
Q2 54.994 15.428 6.00M 3.56x
Q3 39.349 25.207 3.00M 1.56x
TABLE XV
QUERY PERFORMANCE COMPARISON (SF=50)
Query | Their Time (s) | My Time (s) | Output Size | Speedup
Ql 607.644 204.800 75.00M 2.97x
Q2 74.604 21.990 10.00M 3.39x
Q3 63.236 30.466 5.00M 2.08x

D. Analysis under restrictions

The performance results under the restricted, single-threaded
execution environment, presented in tables XI through XV,
show a significant and insightful reversal of the previous find-
ings. Our proof-of-concept GroupJoin operator now consistently
and substantially outperforms the restricted native Hash-Join-
then-Aggregate pipeline. The observed speedup ranges from
approximately 1.22x to a remarkable 4.55x, demonstrating a
clear performance advantage in this restricted setting.



IX. CONCLUSION

While our implementation does not achieve performance
parity with DuckDB’s unrestricted native operators, it success-
fully serves its primary purpose of correctly implementing
the GroupJoin logic within the DuckDB ecosystem. However,
we observed significant performance improvements when
comparing our operator against a restricted version of DuckDB,
where parallelism was disabled by making it single-threaded,
removing parallelism from the Source and Sink interfaces, and
scheduling pipeline events sequentially.

Our baseline comparison demonstrated that the GroupJoin
operator can significantly reduce the overhead of intermediate
data materialization, leading to superior performance in this
controlled setting. The end-to-end integration of our physical
GroupJoin operator into DuckDB achieved a considerable
speedup under these restricted conditions, validating its
conceptual design.

X. FUTURE WORK

This work lays the foundation for future optimization. The
clear path forward involves re-architecting the GroupJoin
operator to bridge the performance gap with the unrestricted
DuckDB implementation by:

« Introducing streaming model: Processing data chunk-
by-chunk instead of buffering them all.

« Introducing parallelism: Partitioning the operator state
and workload to leverage multi-core architectures.

« Optimizing memory access: Implementing a more ef-
ficient hash table (like radix-partitioned hash table) to
improve cache performance.
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