
 1

 E0-261 Database Management Systems

 Project P8: DuckDB

 Akash Maji Utkarsh Sharma
 SR No.: 24212 SR No.: 24116
akashmaji@iisc.ac.in utkarsh2024@iisc.ac.in

 05 December 2024

Abstract

DuckDB is a modern, open-source analytical (OLAP) database system. It is designed to be fast,

reliable, portable, easy to use, and it provides a rich SQL dialect. DuckDB supports arbitrary and

nested correlated subqueries, window functions, collations, complex types (arrays, structs,

maps), and several extensions designed to make SQL easier to use.

Introduction

In this project, we aim to explore the interface provided by DuckDB and implement certain

operators. Firstly, we will discuss the implementation of a new ‘Join’ operator. Secondly, we

change the query planner and optimizer to pick our join operator whenever a predetermined

condition is met. Thirdly, we implement a new ‘GroupJoin’ operator, which will be invoked

whenever a query containing a ‘Join’ followed by a ‘Group By’ is handed to the engine.

Database Architecture

DuckDB is a columnar database, using its custom DuckDB Storage Format, which is a

compressed, columnar, block-based format designed for efficient storage and query execution.

The entire database, including data, metadata, and indexes, is stored in a single, self-contained

file for ease of use and portability. The database can sit in a file with a .db or .duckdb extension.

A query statement in DuckDB is represented via an SQLStatement class instance. The Binder

class is responsible for binding tables and columns to actual physical tables and columns in the

catalog. The Planner class has a CreatePlan() method that creates the logical plan tree from the

AST (Abstract Syntax Tree) obtained using Binder class.

When the query is submitted to the engine, it obtains a logical plan tree. This tree contains

logical operators as nodes. For example, a LOGICAL_COMPARISON_JOIN is a logical

operator that can be replaced by an appropriate physical operator like PHYSICAL_HASH_JOIN,

PHYSICAL_SORT_MERGE_JOIN, PHYSICAL_NL_JOIN etc. The choice of actual algorithm

is left to the optimizer based on estimated cardinality in DuckDB.

mailto:akashmaji@iisc.ac.in

 2

A Value is a unit that holds a single value of arbitrary type. A Vector is the smallest unit of data

handling holding values in a column. A DataChunk is a set of Vectors serving as the unit of data

processing in the pipeline through operators. A Vector can hold up to a fixed number of values,

defined by STANDARD_VECTOR_SIZE. This parameter is configurable and allows it to cater

for different compute-environments, where it may not be possible to keep vector size large. We

have set this as 4 in our experiments. It is to be noted that DuckDB only allows vector size to be

powers of two. The choice of four is to keep the demonstration simple.

We show below how a sample table can be broken down into two chunks each with two vectors.
It is to be noted that the chunks materialized only when needed and are stored in memory on the

fly after scanning from associated tables and columns.

 Figure1: A sample table and its possible datachunks

Execution Model

The execution model used in DuckDB is currently push-based, which is a revamp from the

earlier pull-based model. This means, the operators in DuckDB process the data (e.g. Join) and

push the data to the next operator (e.g. filter) in the pipeline. This allows for massive parallelism,

reduced latency, and simplified dataflow. The execution happens in a pipelined mode, meaning a

long execution sequence is broken down into multiple pipeline events, and executed possibly in

parallel. Each pipeline event has one or more operators in their dependency order, and the

operations in the pipeline are done in that order. Each pipeline has three interfaces: Source,

Operator and Sink. Source produces data for the Operator, which processes the data, and Sink

stores the processed results for the next pipeline.

For example, a typical query Q1 can get us the following pipelines as shown in Figure2.
Q1: SELECT Stud.sid, Enrol.cid
 FROM Stud JOIN Enrol ON Stud.sid = Enrol.sid;
 WHERE Stud.sage > 25;

 3

 Figure2: A sample pipeline demonstration

Communication between operators, sources, and sinks is central to data flow in DuckDB’s query

execution pipeline. For this, certain signals are used by the three interfaces as stated under:

OperatorResultType: Used by regular (non-source/sink) operators to indicate how data should flow:

• NEED_MORE_INPUT: Operator is ready to process more input.

• HAVE_MORE_OUTPUT: Operator still has more output to produce from the current input.

• FINISHED: Operator has completed its work; no further calls will occur.

• BLOCKED: Operator is paused (e.g., waiting for async I/O).

OperatorFinalizeResultType: Used to indicate whether an operator has finished flushing cached results:

• HAVE_MORE_OUTPUT: Operator still has more cached data to flush.

• FINISHED: Operator has completed flushing.

SourceResultType: Indicates the result of pulling data from a source:

• HAVE_MORE_OUTPUT: Source has more output; data is returned.

• FINISHED: Source is exhausted.

• BLOCKED: Source is paused (e.g., waiting for async I/O).

SinkResultType: Indicates the result of pushing data into a sink:

• NEED_MORE_INPUT: Sink requires more input to process.

• FINISHED: Sink is complete; additional input won't change the result.

• BLOCKED: Sink is paused (e.g., waiting for async I/O).

SinkCombineResultType: Indicates the result of combining sink data:

• FINISHED: Combination is complete.

• BLOCKED: Combination is paused (e.g., waiting for async I/O).

SinkFinalizeType: Indicates the result of a Finalize call on a sink:

• READY: Sink is ready for further processing.

• NO_OUTPUT_POSSIBLE: Sink won't provide output, and related pipelines can be skipped.

• BLOCKED: Finalization is paused (e.g., waiting for async I/O).

 4

Implementing New Join Operator

We first begin exploring the interface provided by DuckDB to implement a new JOIN operator.
We call this physical operator “AM_US_JOIN”. The associated logical operator is

“LOGICAL_COMPARISON_JOIN.” This join operator is similar to a plain nested loop join

operator. The query planner and optimizer in DuckDB picks the appropriate join operator based

on estimated cardinality of the tuples involved in the participating relations. We therefore tweak

the ‘client configuration’ file to set the threshold of utmost 100 tuples of relations, and we add

the predetermined condition to check the cardinality of input relations to be within the threshold

limit, in the physical plan generator. Note that the choice of 100 tuples is arbitrary and can be

tuned as per need. The optimizer/physical plan generator then automatically chooses our join

operator, when it sees two small relations as child nodes.

For example, we run the query Q2 and get the following physical plan, as shown in Figure3.
Q2: EXPLAIN SELECT Stud.sid, Enrol.cid
 FROM Stud JOIN Enrol
 ON Stud.sid = Enrol.sid;

 (3a) Before (3b) After

 Figure3: Change in generated physical plan

Implementation Details and Working

We begin by implementing the PhysicalAmUsJoin class extending the PhysicalComparisonJoin

class. It contains Source, Sink and Operator interfaces as mentioned in the execution model.
The Source method is GetData() which scans a datachunk which is used in the join operation.
Actual join is performed by the ResolveComplexJoin() method by calling Execute() internally.

We can do all types of Joins (INNER, LEFT, RIGHT, OUTER) using ResolveComplexJoin().
We have a Combine() method that combines results from different threads and puts them into

Sink. At the end, Finalize() method is called when the Operator is done producing results, and

Sink is not expecting any more results being given.

 5

The join starts with getting the left datachunk, and operating it will all datachunks on the right.

Then we go to the next datachunk in left and continue the process until all datachunks are

exhausted on the left. For each pair of left and right datachunk, there are tuple markers ‘left’ and

‘right’ which progressively move during operation, and the rows are marked first which matches

the Join condition. The matching positions are kept in a match_vector. The actual join happens

between the left and right datachunks using the Perform() method. If matches are found, the

matched tuples are sliced from the input and stored in the output datachunk. The lvector and

rvector hold the indices of matching rows for the left and right sides, respectively. At the end, the

matching rows are sliced into the output datachunk. Then we move to the next pair of

datachunks, and repeat till no more left datachunk is left.

Consider two tables ‘Stud’ and ‘Enrol’. When we run the following query Q3, we will get four

chunks and the operation will be done as shown in Figure4.

Q3: SELECT Stud.sid, Enrol.cid
 FROM Stud JOIN Enrol
 ON Stud.sid = Enrol.sid;

Stud(sid, sname, sage) Enrol(sid, cid)
 Figure4: Working of AM_US_JOIN

 6

 7

Implementing New GroupJoin Operator

The GroupJoin operator is introduced in the physical query plan when we find a ‘Join’ operator

as a child under the ‘Group By’ node in the logical plan tree of the query. The Join operator can

be any logical operator or physical operator, not necessarily AMUS_JOIN. The logical plan

generated is based on the logical operators, which is to be replaced with physical operators. To

implement this, whenever we see a LOGICAL_AGGREGATE_AND_GROUP_BY operator, we

check to see if there is a LOGICAL_JOIN operator somewhere in the children node. If such a

child node exists, we replace the parent with our GROUPJOIN_GROUP_BY physical operator

and return the generated plan. For this, we implemented the interface for our GroupJoin physical

operator (i.e. GROUPJOIN_GROUP_BY). For aggregation, it uses hashing similar to what is

being done in the currently existing ‘Group By’ aggregation logic.

For example, when we run the query Q4, we see the physical plan as shown in Figure5.

Q4: EXPLAIN SELECT Enrol.cid, COUNT(Stud.sid) AS student_count
 FROM Stud JOIN Enrol
 ON Stud.sid = Enrol.sid
 GROUP BY Enrol.cid;

 Figure5: Simple GroupJoin shown in physical plan Figure6: Unified GroupJoin

It is to be noted that in this simple variant, GROUPJOIN operator only works on the data output

by the already processed JOIN operator in the child. That means, the GROUPJOIN operator is

not standalone and needs data relevant for grouping. The standalone GROUPJOIN operator,

which will directly operate upon scanned columns to do both in-memory join and grouping will

be discussed later. The goal of this simple variant is to be able to introduce our own

GROUPJOIN physical operator capable of aggregation, which will be extended later for doing

JOIN also, and thus the physical plan tree will be changed as shown in Figure6.

 8

Implementation Details and Working

We begin implementing the PhysicalGroupJoinAggregate() class by extending the

PhysicalOperator() class. It contains Source, Sink and Operator interfaces as a physical

operator. The Source interface has a GetData() method that produces data from the global sink

state. CreateHT() method creates a hash table at the time of object instantiation. The AddChunk()

method adds datachunk into the hash table within the Sink() interface, thereby performing group-

by and aggregation. It can be thought of as the build phase. Scan() is called repeatedly to extract

all results from the hash table, one batch at a time, into output datachunks. It can be thought of as

a probe phase. The Scan() method is the bridge between the internal representation of aggregated

data (stored in the hash table) and the external representation (output datachunk).

Tests and Experiments

To verify the implementations of ‘AM_US_JOIN’ and ‘GROUPJOIN_GROUP_BY’ for their

correctness only, we created and used a small database consisting of two relations each of

cardinality 8, to keep demonstration simple, as shown:

1. Stud(Sid: INT, Sname: VARCHAR, Sage: INT)
2. Enrol(Sid:INT, Cid: INT)

We demonstrated that our ‘Join’ operation is working as per 3 simple queries [Q1, Q2, Q3].

and we obtained results like what we got before introducing our Join operator. Also, the simple

GroupJoin was run using query Q4 that does aggregation using one group, i.e. cid. We found

results exactly similar to existing aggregation logic for the ‘simple GroupJoin’ implementation

which only does aggregation, on projected and processed data out of Join operation.

We also created a database with 3 big tables:

• Users (user_id, first_name, last_name, address, email)
• Products (product_id, product_name, description, price)
• Orders (order_id, user_id,product_ordered, total_paid)

We evaluated the results of these 4 queries [QA, QB, QC, QD] producing ~5180, ~383320, ~70,

~5625 rows respectively. The results were consistent with those of original JOINs and

GROUP-BYs.

We ran sqllogic tests also to verify the creation and insertion of tuples into the two tables as per

DuckDB documentation. The two databases, respectively, reside in two files (small.db and

big.db) available at $ROOT/myduckdb/sql_files/ (where $ROOT is directory of installation).

 9

QA:
SELECT users.user_id, orders.order_id
FROM users
JOIN orders ON users.user_id != orders.user_id;

QB:
SELECT u.first_name, u.last_name, p.product_name, o.total_paid
FROM orders o
JOIN users u ON o.user_id != u.user_id
JOIN products p ON o.product_ordered != p.product_id;

QC:
SELECT o.user_id, o.product_ordered, SUM(o.total_paid) AS total_spent
FROM orders o
GROUP BY o.user_id, o.product_ordered;

QD:
SELECT u.first_name, u.last_name, p.product_name, SUM(o.total_paid) AS total_spent
FROM orders o
JOIN users u ON o.user_id != u.user_id
JOIN products p ON o.product_ordered != p.product_id
GROUP BY u.user_id, p.product_id, u.first_name, u.last_name, p.product_name;

Q1:
SELECT Stud.sid, Enrol.cid
FROM Stud
JOIN Enrol ON Stud.sid = Enrol.sid;
WHERE Stud.sage > 25;

Q2:
EXPLAIN SELECT Stud.sid, Enrol.cid
FROM Stud
JOIN Enrol ON Stud.sid = Enrol.sid;

Q3:
SELECT Stud.sid, Enrol.cid
FROM Stud
JOIN Enrol ON Stud.sid = Enrol.sid;

Q4:
EXPLAIN SELECT Enrol.cid, COUNT(Stud.sid) AS student_count
FROM Stud
JOIN Enrol ON Stud.sid = Enrol.sid
GROUP BY Enrol.cid;

 10

Future Work

We want to combine the Join-Project-Group By logic into one single unified operator

(GROUP_JOIN). The GROUPJOIN operator will directly read in data from tables, do the

necessary joining, and subsequent projection, so that group-by can be done. Our

GROUPJOIN_GROUPBY can be used for aggregation. We want to extend the logic of the

GetData() method in the PhysicalGroupJoin operator. GetData() is the Source interface that

should do the reading of tables, doing in-memory processing (join) and doing projection, so that

GROUPJOIN_GROUPBY (as discussed earlier) can do aggregation.

Additionally, we will need to check whether we can replace GroupBy-Project-Join and if we can

use GroupJoin, provided that the children have a Join, and then replace the plan with our

PhysicalGroupJoin plan.

The plan generator will generate plans for the two children, attach them as children and return

the final GroupJoin plan.

 11

 12

Summary

In this project, we reviewed the ecosystem and interfaces provided by open-source DuckDB.
We first explored the implementation of a simple nested loop join, and saw a basic tuple oriented

nested loop join, calling it AM_US_JOIN, using the existing interfaces and classes, and

extending the functionality. Next, we tweaked the query planner and optimizer to pick our

version of the Join over others when threshold is met. We then explored how we can efficiently

combine both ‘Join’ and ‘Group By’ Operations into a single GroupJoin operator, that will

process the Join first in memory after reading directly from table sources, and use the bulk result

to aggregate over it, giving results from one physical GroupJoin operator. This will lead to

efficiency over the currently existing pathway, as we will not have to pass the data through many

physical operators.

References and Links

GitHub Repository:

https://github.com/akashmaji946/myduckdb/tree/main

GroupJoin VLDB Paper:

https://vldb.org/pvldb/vol14/p2383-fent.pdf

DuckDB Official Documentation

https://duckdb.org/docs/

https://github.com/akashmaji946/myduckdb/tree/main
https://vldb.org/pvldb/vol14/p2383-fent.pdf
https://duckdb.org/docs/

	Abstract
	Introduction
	Database Architecture
	Execution Model
	Implementing New Join Operator
	Implementation Details and Working
	Implementing New GroupJoin Operator
	Implementation Details and Working
	Tests and Experiments
	Future Work
	Summary
	References and Links

