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Abstract—Convolutional Neural Networks (CNNs) are at the
heart of many modern computer vision systems. However, they
often run into memory bottlenecks, especially when performing
inference on GPUs. These bottlenecks can slow things down,
limiting throughput, increasing latency, and consuming more
power. In this project, we dug into this problem by profiling
CNN inference across several well-known models (like LeNet-
5, AlexNet, and various ResNets) using different batch sizes.
Our goal was to pinpoint exactly where memory becomes
a problem. We used GPU profiling tools to carefully track
memory usage patterns. Following this analysis, we explored and
tested several software-based optimization techniques, including
switching to FP16 arithmetic, using Automatic Mixed Precision
(AMP) combined with Automatic Memory Coalescing (AMC),
and implementing memory tiling. Our findings shed light on how
batch size affects performance and how effective these different
optimization strategies are at cutting down the memory footprint
and potentially speeding things up, ultimately aiming for more
efficient large-scale deployments. We paid close attention to
metrics like how long kernels took to run, the total execution
time, peak memory consumption, memory transfer durations,
and time spent waiting on system calls.

Index Terms—CNN Inference, Memory Profiling, GPU Opti-
mization, Deep Learning, Performance Analysis, FP16, Memory
Tiling, AMP, AMC.

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) form the
backbone of many advances in computer vision today, tack-
ling tasks from image classification and object detection to
segmentation [1], [2]. While modern GPUs boast impressive
number-crunching power, the actual speed of CNN inference
often gets bogged down by memory issues [3], [4]. These
memory bottlenecks don’t just slow things down; they can
severely limit how many inferences you can run per second
(throughput), increase the delay for each result (latency), and
drive up power consumption [5]. Common culprits include
scattered memory accesses (non-coalesced), not making the
best use of caches, and simply moving too much data back
and forth between different memory levels, especially relying
too heavily on the slower global memory.

The need for speed in inference is crucial in many real-
world applications. Think about Augmented and Virtual Real-
ity (AR/VR) – these systems need incredibly high frame rates
(often 72-120Hz), meaning each frame needs to be processed
in under 15 milliseconds. Robotics rely on quick predictions
for tasks like figuring out where they are or deciding what to
do next. Even advanced graphics techniques, like path tracing,
are increasingly using CNN-based denoisers that demand high

throughput (30-100+ frames per second). To meet these tough
demands, we need to look beyond just raw computational
power and focus squarely on making memory access more
efficient.

This project sets out to tackle these memory challenges
head-on. We started by systematically profiling how memory
is accessed during CNN inference. Armed with insights from
detailed empirical profiling using tools like NVIDIA Nsight
Compute [6], we then explored and implemented specific
software-level optimizations. We looked into techniques like
using reduced precision arithmetic (FP16), memory tiling,
Automatic Mixed Precision (AMP), Automatic Memory Co-
alescing (AMC), and considered others like kernel fusion
and changing data layouts. Our aim is to cut down both the
latency and the overall energy used, hopefully paving the way
for deploying CNN models more efficiently and at a larger
scale on GPUs. We made sure to analyze how things change
across different network architectures and batch sizes to get a
complete picture of the trade-offs involved.

II. RELATED WORK

Making memory operations faster for deep learning on
GPUs, especially for CNN inference, has been a busy research
area. Researchers have explored several promising angles:

Memory Layout and Access Optimization: One popular
strategy involves rearranging how data is stored in memory
(data layout transformations). The idea is to improve data
locality – keeping related data close together – and enable
more efficient, grouped memory reads and writes (coalesced
transactions). This helps reduce stalls and makes better use of
the available memory bandwidth [5]. Libraries like NVIDIA’s
cuDNN often have these kinds of optimizations built-in [7].

GPU Profiling Tools: You can’t fix what you don’t un-
derstand. Tools like NVIDIA Nsight Compute [6], along with
others like nvprof and nsys, are essential for getting a deep
dive into memory behavior. They provide detailed numbers on
memory latency, throughput, how often caches are hit, how
busy the processing units (SMs) are, and how long different
parts of the code (kernels) take to run. This allows developers
to pinpoint exactly where the bottlenecks lie [6]. We relied
heavily on these tools in our own work [8].

Reduced Precision and Mixed Precision: Using less
precise number formats, like 16-bit floating point (FP16) or
8-bit integers (INT8), directly cuts down on the amount of
memory needed and the bandwidth required to move data.



Plus, hardware like NVIDIA’s Tensor Cores can often perform
calculations much faster with these lower precisions [4].
Frameworks supporting Automatic Mixed Precision (AMP)
help automate the process, smartly using FP16 for parts of the
network where it’s safe, while keeping more sensitive parts in
standard 32-bit precision (FP32) to maintain accuracy.

Kernel Fusion and Operator Reordering: Sometimes,
multiple operations are performed one after another (like a
convolution followed by a ReLU activation). Kernel fusion
combines these into a single GPU task (kernel). This cuts
down on the overhead of launching multiple kernels and avoids
writing intermediate results out to the slow global memory and
then reading them back in [5]. Simply changing the order in
which operations are performed can also sometimes improve
data locality.

Memory Tiling: This technique involves breaking down
large chunks of data (like the feature maps or weights in a
CNN) into smaller blocks or ’tiles’. These smaller tiles are
designed to fit into faster, smaller memory spaces on the GPU,
like shared memory or the L1/L2 caches. By working on these
tiles, the algorithm can drastically reduce how often it needs
to access the slower global memory [5].

Distributed Inference: When dealing with extremely large
models or needing very high throughput, sometimes inference
is split across multiple GPUs. This introduces new challenges
related to communication overhead between the GPUs. Strate-
gies for smartly partitioning the data and optimizing how the
GPUs talk to each other become important [9], although this
wasn’t our primary focus in this project [10].

Our work connects these threads. We combine in-depth pro-
filing across multiple models [8] with a practical evaluation of
several software optimization techniques (FP16, AMP/AMC,
Tiling) specifically aimed at making CNN inference run better
on commonly available GPUs.

III. METHODOLOGY

A. Profiling Setup and Tools

To get a broad view, we ran our experiments on systems
using different NVIDIA GPUs: a GeForce RTX 3060 (part of
the Ampere family), a GTX 1050 (Pascal architecture), and a
Tesla T4 (Turing architecture). This selection gave us a sense
of how things perform across a range of hardware capabilities.
We used standard deep learning libraries, specifically PyTorch
version 1.13 and later, to build and run our CNN models.

For digging into the performance details, our main tool
was NVIDIA Nsight Compute [6]. We also used system-level
tools (like the functionalities offered by nvprof, nsys, or ncu,
sometimes accessed through the PyTorch profiler). We focused
on collecting key metrics, including:

• DRAM Frequency and Throughput (as a percentage)
• L1/Texture Cache Throughput (as a percentage)
• L2 Cache Throughput (as a percentage)
• Compute (SM) Throughput (as a percentage)
• How many cycles the SMs were active
• Execution times for individual GPU kernels

• Time spent transferring data between the host CPU and
the GPU (both ways)

• Peak GPU Memory Allocated
• Time spent waiting on system calls (like semwait or poll)

B. Models and Datasets

We chose a few representative CNN architectures to ana-
lyze:

• LeNet-5: A classic, relatively small CNN, good for base-
line comparisons.

• AlexNet [1]: One of the foundational large-scale CNNs
that spurred modern deep learning.

• ResNet [3]: We looked at several versions – ResNet-
20, ResNet-32, ResNet-44, and ResNet-56. This let us
study how network depth and overall complexity affect
performance. These were custom implementations not the
standard versions available in PyTorch.

The datasets we used were:
• CIFAR-10: A common benchmark dataset with 10 object

classes and 60,000 small images (50k for training, 10k
for testing), each 3x28x28 pixels. We used this for most
of our batch size analysis and initial optimization tests.

• Mini ImageNet (a subset): A more challenging dataset
with around 1000 classes, roughly 38,000 images, and
larger image dimensions (3x224x224). This was particu-
larly useful for our memory tiling experiments because
the larger images make memory access patterns more
critical.

In our experiments, we typically varied the batch size for infer-
ence, trying out a range of values (e.g., 1, 2, 4, and doubling up
to 512 or 1024). This helped us see how performance scales
and where bottlenecks might appear or shift as we process
more images at once.

C. Evaluation Metrics

To judge performance and efficiency, we focused on these
primary metrics:

• Latency: How long does it take, on average, to process
one batch of images? We also looked at the execution
time of individual kernels.

• Throughput: How many images can the model process
in a given amount of time? (We inferred this from the
total execution time for a set number of images).

• Peak GPU Memory Allocated: The maximum amount
of GPU memory allocated at any point during inference.

• GPU Utilization: What percentage of the time were the
GPU’s main processing units (SMs) busy? We also looked
at the utilization of specialized units like Tensor Cores
when applicable.

• System Overheads: How much time was spent waiting
for the operating system or synchronization mechanisms
(like the ’semwait’ system call)?

• Accuracy: When we applied optimizations like FP16 that
might affect the results, we checked the test accuracy
and loss to make sure the model was still performing
correctly.



D. Optimization Techniques Explored

Based on what we learned from profiling, we implemented
and tested the following software-based optimizations:

• FP16 Arithmetic: We used PyTorch’s
‘torch.cuda.amp.autocast()‘ feature. This enables
Automatic Mixed Precision, which cleverly uses faster
FP16 calculations where possible while keeping critical
parts in FP32 to maintain accuracy.

• AMP + AMC: We tried combining Automatic Mixed
Precision (AMP) with Automatic Memory Coalescing
(AMC). The idea here is to optimize memory access
patterns at the same time as changing precision, which
can be particularly helpful on architectures like the Turing
GPU (Tesla T4).

• Memory Tiling: We experimented with implementing
tiling strategies for convolution operations. This was
especially relevant when working with the larger images
from the ImageNet dataset. By breaking the work into
smaller tiles, we aimed to reduce trips to the slow global
memory by keeping more data in faster shared memory or
caches. We tried different tile sizes to see how it affected
performance.

We recognized that other techniques, like explicitly changing
data layouts or fusing kernels together, could also be benefi-
cial, but we decided to focus on the ones listed above for this
phase of our work.

IV. RESULTS AND ANALYSIS

We carried out extensive profiling runs and applied various
optimizations to better understand and enhance the perfor-
mance of CNN inference. The Phase 2 report has all the details
about profiling which are not included in this report [8], [10].

A. Impact of Batch Size (ResNet on CIFAR-10)

When we analyzed different ResNet variants on the CIFAR-
10 dataset, changing the batch size revealed some clear pat-
terns:

• Execution Time: Initially, the total time to run inference
generally dropped as we increased the batch size (up to
around 64). This makes sense, as we’re better utilizing
the GPU’s parallel processing capabilities. However, for
mid-range sizes (like 128 or 256), we sometimes saw
the time increase again. This might be due to overheads
or less efficient partitioning of resources. At very large
sizes (512, 1024), the time might drop again as the GPU
becomes fully saturated (see the top graph in Fig. 1).

• Peak GPU Memory Allocated: Increased monotonically
and significantly with batch size, as expected due to larger
activation maps (See Fig. 1, bottom). This highlights the
memory constraints of using large batches.

• GPU Utilization (%): Similarly, the overall GPU uti-
lization generally went up with both batch size and the
complexity of the model (e.g., ResNet-56 was busier than
ResNet-20). This trend usually plateaued at the larger
batch sizes (see the bottom graph in Fig. 2).

• Average Inference Time: The time taken per batch
naturally increased with both the batch size and the
model’s complexity (see the top graph in Fig. 2).

Fig. 1. Total inference time and peak GPU memory allocated for various
ResNet models on CIFAR-10 across different batch sizes. Notice the initial
drop in time and the steady increase in memory usage.

These results highlight a fundamental trade-off: larger
batches make better use of the GPU’s compute power but
put more pressure on memory and can sometimes introduce
unexpected scheduling overheads.

B. FP16 Arithmetic Optimization
We tested using FP16 precision by enabling PyTorch’s

‘autocast()‘ feature for a ResNet-110 model (which was orig-
inally trained with standard FP32 weights) doing inference on
CIFAR-10.

• Inference Time: We actually observed a slight increase
in the inference time at smaller batch sizes compared
to using only FP32. This was a bit counterintuitive. It’s
likely because the overhead involved in converting data
types and managing the mixed precision outweighed the
computational speedup for these relatively small work-
loads on this dataset (see the top graph in Fig. 3). We’d
expect the benefits of FP16 to be more significant for
tasks that are heavily compute-bound or when running
on hardware with strong FP16 support (like GPUs with
Tensor Cores).

• Memory Usage: On the plus side, we saw a noticeable
reduction in the average memory used, especially at larger



Fig. 2. Average inference time per batch and GPU utilization for ResNet
variants on CIFAR-10. This shows how latency and utilization increase with
batch size and model depth.

batch sizes. This is because the activation maps could be
stored using half the precision (FP16 instead of FP32)
(see the bottom graph in Fig. 3).

• Accuracy: Importantly, we didn’t find any significant
drop in test accuracy or increase in test loss compared
to the FP32 baseline. This confirms that using FP16 was
a viable option for this specific model and dataset without
hurting the results (see Fig. 4).

C. AMP + AMC Optimization

Using a Tesla T4 GPU (which has the Turing architecture),
we tested combining Automatic Mixed Precision (AMP) with
Automatic Memory Coalescing (AMC). We ran this on several
ResNet variants using a batch size of 1024.

• Inference Time: Similar to our pure FP16 experiment,
we again saw a slight increase in the average time
taken per batch compared to the FP32 baseline (see the
top graph in Fig. 5). It seems that, for these specific
models and this batch size on this GPU, the overhead
of managing mixed precision dynamically, and perhaps
less-than-perfect benefits from memory coalescing, still
outweighed the gains from faster computation.

Fig. 3. Comparing inference time and memory usage for standard FP32 and
FP16 arithmetic on CIFAR-10.

• Peak Memory Allocated: However, the benefit in mem-
ory usage was striking. We achieved a drastic reduction
– around 45-50% – in the peak amount of GPU memory
allocated across all the ResNet models we tested (see the
bottom graph in Fig. 5). This is a huge win, as it frees up
a significant chunk of GPU memory that could be used
for other tasks or allow for running even larger models
or bigger batches.

D. Memory Tiling Optimization

We explored memory tiling using a ResNet-20 model on
the Mini ImageNet dataset. Since ImageNet has larger images
(3x224x224), memory access patterns become more important.
We used a fixed batch size of 8 and varied the tile size (trying
8x8, 16x16, 32x32, and 64x64 tiles).

• Inference Time: The time taken for inference dropped
significantly as we increased the tile size. Using larger
tiles allows the GPU to process more data efficiently
within its faster memory levels (like shared memory or
caches), meaning fewer slow trips to the main global
memory (see the red line in Fig. 6).

• GPU Utilization: As the inference time dropped, the
GPU utilization increased with larger tile sizes. This
indicates that the compute resources were being used
more effectively once the memory access bottleneck was
eased (see the blue dashed line in Fig. 6).



Fig. 4. Comparing test accuracy and loss for standard FP32 and FP16
arithmetic. The impact on accuracy is minimal.

• Average Memory Usage: We observed a slight increase
in the average memory usage with larger tile sizes. This
reflects the fact that larger tiles require storing more
intermediate data in the faster (but limited) memory
regions like shared memory (see the green dash-dot line
in Fig. 6).

This experiment clearly demonstrates how effective tiling can
be when memory access is the limiting factor, particularly
with larger input data. However, it also highlights a trade-
off: reducing latency through tiling comes at the cost of using
more of the GPU’s limited fast memory resources. Finding the
right tile size is key.

E. Validation against Published Results

Figure 7 shows the normalized execution times originally
reported by Li et al. [5] for five complete CNNs—LeNet,
CIFAR, AlexNet, ZFNet, and VGG—evaluated under six
implementation strategies: cuDNN-MM, cuDNN-FFT, cuDNN-
FFT-T, cuda-convnet, cuDNN-Best, and Opt. All bars are
normalized to the cuDNN-MM baseline, so the vertical axis
can be read directly as speed-up.

1) Legend and Axes: The horizontal axis lists the five CNN
models, while the vertical axis shows speed-up relative to
cuDNN-MM. Each color denotes one of the six schemes:

Fig. 5. Comparing inference time and peak GPU memory allocated using
FP32 versus the combined AMP + AMC optimization on a Tesla T4 GPU.

Fig. 6. How tile size affects inference time (lower is better), GPU utilization
(higher is better), and average memory usage for ResNet-20 on ImageNet.

• cuDNN-MM: standard matrix-multiplication mode in
cuDNN

• cuDNN-FFT: FFT-based convolution (with MM fall-
back)

• cuDNN-FFT-T: FFT-tiling mode (with MM fallback)
• cuda-convnet: CHWN-based direct convolution
• cuDNN-Best: per-layer selection of the fastest cuDNN

mode
• Opt: layout-aware, memory-optimized framework

2) Key Observations:



Fig. 7. Overall network-level speed-up reported in the literature.

1) No single kernel wins everywhere. cuda-convnet tops the
tiny LeNet and CIFAR models, whereas cuDNN variants
gain the edge once the networks scale up (AlexNet,
ZFNet, VGG).

2) cuDNN-Best—which cherry-picks the fastest kernel per
layer—narrows the gap, but still trails Opt.

3) Opt delivers the highest throughput across the board:
5.6× on LeNet and roughly 2× on AlexNet, ZFNet,
and VGG, demonstrating its wide applicability.

3) Significance: These results emphasize that end-to-end
CNN inference speed hinges on holistic memory-efficiency
measures—namely adaptive data layouts and streamlined pool-
ing/softmax accesses.

V. CONCLUSION

In this project, we took a close look at the memory bottle-
necks that often plague CNN inference on GPUs and exper-
imented with several software techniques to make things run
better. By carefully profiling models like LeNet-5, AlexNet,
and various ResNets with different batch sizes using tools
like Nsight Compute, we gained valuable insights into their
performance behavior. One key takeaway is that the choice of
batch size has complex effects – it influences not just how
busy the compute units are and how much memory is used,
but also introduces system-level overheads, such as time spent
waiting on semaphores.

We evaluated a few specific optimization strategies:
• FP16 / AMP: These techniques showed great promise

for cutting down memory usage. When combined with
Automatic Memory Coalescing (AMC), we saw peak
memory allocation drop by as much as 50%. Although we
didn’t see faster inference times in our specific tests on
CIFAR-10 (likely due to overheads outweighing benefits
for those workloads), the model’s accuracy remained
intact. It is worth noting that the lack of observed speedup
might be specific to the workloads and the range of
hardware tested; architectures with more powerful Tensor
Core implementations or more compute-intensive tasks
could potentially realize significant latency reductions

from FP16/AMP. This makes mixed precision a very
attractive option, especially when GPU memory is tight.

• Memory Tiling: This proved very effective at reducing
latency and boosting GPU utilization, particularly when
dealing with larger input images like those in ImageNet.
Tiling optimizes how data moves within the GPU’s mem-
ory hierarchy. The catch is that you need to choose the
tile size carefully, balancing the speed gains against the
limited amount of fast memory available on the GPU.

Our results suggest that there’s no single "magic bullet"
optimization. The best strategy really depends on the specific
situation – the model architecture, the GPU hardware being
used, the chosen batch size, the characteristics of the input
data, and whether the main goal is to minimize latency,
reduce the memory footprint, or save energy. Furthermore, the
significant system call overheads we observed remind us that
optimization efforts should look beyond just the GPU kernel
execution times and consider the entire system context.
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